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Abstract 

 

A semi-empirical method that allows us to predict intensity of generated field emission in 

superconducting RF cavities is described. Spatial, angular and energy distributions of the 

generated radiation are calculated with the FISHPACT code. The Monte Carlo code 

MARS15 is used for modeling the radiation transport in matter. A comparison with dose rate 

measurements performed in the Fermilab Vertical Test Facility for ILC-type cavities with 

accelerating gradients up to 35 MV/m is presented as well.  

 

Introduction 

Test facilities for high-gradient superconducting RF cavities usually are strong sources of γ-radiation 

due to field emitted electrons inside the cavities. The field-induced emission is generally the result of 

various imperfections, e.g., residual dust contamination, in the cavity. The imperfections can give rise 

to a significant enhancement of local electric field and, consequently, field emitted electrons which 

generate gammas in the surrounding material. The neutron component generated by the gammas is not 

negligible for accelerating gradients of above ~20MV/m. The design of shielding for such facilities 

involves significant uncertainties because of the lack of a reliable model of the field emission. 

We use a semi-empirical approach to predict the radiation source term in the superconducting RF 

cavities. It is based on realistic spatial, angular and energy distributions of field emitted electrons 

modeled with the FISHPACT code [1] as well as dose rate measurements performed at the DESY 

Tesla Test Facility (TTF). Modeling of the interaction with and transport in matter for the generated 

radiation is performed with the Monte Carlo code MARS15 [2]. A comparison between predicted and 

measured dose rates for the Fermilab Vertical Test Facility is performed.  

Source Term Issues 

 Field-induced dark current in superconducting RF cavities 

Experimental observations of field-induced emission (in other words−dark current) in 

superconducting RF cavities can be summarized as follows: (i) surface imperfections can happen 

anywhere, but field emission occurs mostly around irises−locations with the highest local electric 

field; (ii) for a given superconducting RF cavity the emission usually does not occur at several sites; it 

usually happens at a single site and lasts until a significant amount of RF energy stored in the cavity is 

lost to the generated dark current. Therefore, in our model we focus on regions around the irises, and 

the field emitted electrons are modeled inside the cavity until they hit the cavity surface. Phase-space 
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coordinates of such events represent a digitized source term for subsequent modeling of secondary 

particle generation and transport in the entire system with the MARS15 code.  

Dark current generation is assumed to be equiprobable for all regions around the irises. For a 

given region, however, the probability of field-induced emission depends greatly on the magnitude 

and RF phase of the surface electric field [3]. Therefore, the relative probabilities of possible electron 

trajectories differ significantly, and the most probable trajectories usually do not correspond to the 

highest electron energy gain in the accelerating field. In our model, the field emission is generated 

with azimuthal symmetry.  

Trajectory analysis 

 A realistic two-dimensional model for the radiation source term was developed to describe the 

trajectories and energy distributions of field emitted electrons generated in superconducting RF 

cavities at high accelerating gradients. The FISHPACT code used to model the electron trajectories is 

interfaced with the POISSON SUPERFISH code [4], a simulation package used to calculate RF 

electromagnetic fields. Although the simulation provides a field emission current, given input field 

emission parameters, only the electron trajectories and energies have been used here. The dose 

estimated in the simulation using standard parameters from literature [3], was found to be substantially 

higher than justified by existing data, so data have been used to normalize the predicted dose, as 

discussed later.  

The cavity cell structure and simulated surface electric field are shown as a function of cavity Z in 

Figs. 1 and 2. Electrons emitted from iris regions may be accelerated along the cavity axis and acquire 

significant energy. An example of simulated trajectories for an emission site, in which electrons can 

reach energy almost as high as the cavity accelerating gradient, is shown in Fig. 3.  

 

Figure 1: The surface electric field of a 9-cell cavity (solid, normalized to 1 MV/m gradient), and the 
cavity cell structure (dashed) as a function of cavity Z from a SUPERFISH simulation. The electric 

field peaks in the cavity iris regions. 
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Figure 2: A zoomed view of the previous figure, showing detail around an iris in a 9-cell RF cavity.  

 

 

 

Figure 3: Simulated electron trajectories generated in a 9-cell SRF cavity with an accelerating 
gradient of 30 MV/m.  The curves inside the cavity correspond to electron trajectories for 10 degree 
increments in the RF phase, for the half period in which the electric field has the correct sign to pull 

electrons from the surface.   

 
The maximum gradient of 30 MV/m has been chosen to correspond to the largest gradient at which 

field emission is likely to result in a substantial dose rate immediately above cryostat, as determined 

from data. In addition, this is approximately the largest gradient for which the Fermilab Vertical Test 

Facility must be able to test typical cavities without interrupting the RF system with radiation 

monitoring system trips.  

For every single iris, five emission sites were studied: the iris itself and four sites in its vicinity 

(two on each side). Emission sites near cavity beampipes were taken into account as well. The surface 

electric field has the right sign to facilitate the electron quantum tunneling under the surface potential 

barrier for 50% of the test time. The corresponding RF phase intervals were divided into 18 10° bins, 

so that 17 sample trajectories with electric field greater than zero are generated for each emission site. 

The phase-space coordinates (r, E, Ω) of electrons when their trajectories hit the inner cavity surface 

were recorded for a subsequent modeling with the MARS15 code.  
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Fowler-Nordheim model 

 Fowler and Nordheim [3] were the first to provide a description of field emission as quantum 

mechanical tunneling:     

 

                                                                                                                                        (1) 

 

where j is the density of the generated electron dark current, E is the local electric field, A and B are 

slowly varying functions of E, and φe is work function of the emitting material. In practice, however, 

the field induced emission was observed at much smaller fields than those compatible with the 

Equation (1).  In order to better fit experimental results, the following expression was found to be 

more accurate: 

 

                                                                                                                                               (2) 

 

Two new parameters are introduced in Equation (2): (i) the effective emitting area factor, S, and (ii) 

the local field enhancement factor, β. Equation (2) implies that the emission occurs at small localized 

spots around imperfections and the local field at the imperfections can be significantly higher (by a 

factor of about 100 and more) than that predicted for an idealized cavity surface. The two parameters 

vary substantially and are usually determined from experimental data. 

Intensity of the predicted dark current 

 Because of the variability in field emission parameters, experimental data from DESY/TTF are 

used  to normalize the predicted dark current, as shown in Fig.4. From these data, we determined that 

for 90% of all measurements the dose rate measured under the external shielding did not exceed 5 

R/hr.  

 

Figure 4: Measured maximum dose rates at DESY/TTF under the external shielding. 

 
Therefore, we assume that the total dark current generated in a superconducting RF cavity 

corresponds to the dose rate of 5 R/hr predicted at a similar location in Fermilab Vertical Test Facility, 
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after controlling for differences in radiation shielding. Practically speaking, if the field emission is too 

high, cavities  are removed from the test facility and undergo an extra cleaning procedure.   

 

Vertical Test Facility at Fermilab 

The Vertical Test Facility for superconducting RF cavities at Fermilab has been in operation since 

2007. The facility currently consists of a single vertical test cryostat VTS1. Radiation shielding for 

VTS1 was designed for single 9-cell 1.3 GHz cavities using a very simple field emission model as the 

radiation source [5].  The shielding consists of three parts: a plug internal to the cryostat, a movable 

shielding lid above the cryostat, and the concrete walls of the pit containing the cryostat.  The internal 

shielding consists of a cylindrical assembly above the cavity containing layers of lead, steel and 

borated polyethylene.  The external shielding consists of a concrete/steel movable shielding lid and 

borated polyethylene in instrumentation feedthrough regions.  The RF system is interlocked through a 

radiation monitor outside of the shielding to maintain a controlled area designation. 

Two additional cryostats with common design, VTS2&3, are being procured, and are sized such 

that six 9-cell cavities can be installed per cryostat. The test throughput will be gained through 

common cool-down and warm-up time, with cavities tested sequentially. Space for additional 

shielding, either internal or external to the cryostat, is limited. An evaluation of the radiation shielding 

was performed, to minimally extend the VTS1 shielding design to a six-cavity configuration in 

VTS2&3.  The external shielding for VTS2&3 was unchanged.  The internal shielding consists of 

cylindrical lead blocks above each of the cavities and cylindrical layers of steel and borated 

polyethylene above the upper cavities.  The configuration of internal shielding with respect to the 

cavities is shown in Fig.5.  Other cryostat components also serve as radiation shielding: (i) layers of 

copper and G10 above the internal shielding and under the top plate; (ii) the steel top plate; (iii) 

several cylindrical shells around  the superconducting RF cavities – magnetic shield of Cryoperm-10 

with aluminum support liner, helium vessel, copper thermal shield and steel vacuum vessel.  Various 

small components such as cables and pipes are not included in the model. The superconducting RF 

cavities are tested in a superfluid helium bath at 2 K. Measurements at VTS1 revealed that total cool-

down time is about 180 minutes, and that cooling the internal shielding occupies about a third of that 

time. The estimated total cool-down time for VTS2&3 without the six internal shielding lead blocks, 

initially inherited from the VTS1 design, is about 240 minutes. Keeping all the six lead blocks would 

increase the cool-down time by about 30%. Using an extra layer of external shielding on the movable 

lid, if necessary, is preferable in this case, and the extra mechanical load is expected to be well within 

the shield’s load tolerance. 

For VTS1, measured dose rates are shown in Fig. 6. According to the described model, the 

predicted dose rate under the external shielding is < 0.250 R/hr 90% of the time. The measurements 

are well within this value, to within the limited statistics. The described approach to shielding design 

for test facilities is justified by the possibility of extra cleaning procedures for tested superconducting 

RF cavities.    
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Figure 5: A fragment of a model VTS2 or VTS3 insert with six RF cavities, showing a lead block 
above each cavity and a steel/borated polyethylene block above the entire cavity assembly. 

 

 

 

Figure 6: Dose rates measured at VTS1 for 9-cell superconducting RF cavities with various 
accelerating gradients. 
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